Evolving 3D Models of Trees Using Genetic Programming

نویسنده

  • Guillaume Poncin
چکیده

This paper describes a technique to evolve 3D models of plants based on deterministic automata. It uses cellular encoding to obtain these automata from trees evolved in standard genetic programming software. The fitness is a combination of high-level characteristics of the model, including overall shape, number of branches and geometric characteristics. We introduce a grid-based constraint evaluation as a way for the designer to shape a tree. This approach can be extended to modeling more than plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Autonomous Agent Controllers as Analytical Mathematical Models

A novel Artificial Life paradigm is proposed where autonomous agents are controlled via geneticallyencoded Evolvable Mathematical Models (EMMs). Agent/environment inputs are mapped to agent outputs via equation trees which are evolved using Genetic Programming. Equations use only the four basic mathematical operators: addition, subtraction, multiplication and division. Experiments on the discre...

متن کامل

DAMAGE AND PLASTICITY CONSTANTS OF CONVENTIONAL AND HIGH-STRENGTH CONCRETE PART II: STATISTICAL EQUATION DEVELOPMENT USING GENETIC PROGRAMMING

Several researchers have proved that the constitutive models of concrete based on combination of continuum damage and plasticity theories are able to reproduce the major aspects of concrete behavior. A problem of such damage-plasticity models is associated with the material constants which are needed to be determined before using the model. These constants are in fact the connectors of constitu...

متن کامل

Estimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming

Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...

متن کامل

Modeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming

Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....

متن کامل

Monthly rainfall Forecasting using genetic programming and support vector machine

Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003